课堂因差错而精彩
——华应龙教学案例分析
宋剑湖小学 姚春霞
【案例】
这是四年级一节练习课中的一个片断。华老师让学生判断课本上总复习中的一道题:“4个1平方米的小正方形拼成的图形面积一定是4平方米。”有一个小学生站起来说:“不一定。如果4个小正方形摆成一排,或者是拼成一个正方形,那么它的面积是4平方米。可是,如果你角对角地拼,那它的面积就不是4平方米。”
所有听课的老师都一头雾水,同学们也都“啊”的一声,表示不理解和不赞成。发言的学生十分窘迫,华老师并没有急于否定,而是耐心地问他:“很难用语言来表述,是吗?那就把你的想法画在黑板上。”学生画图如下:(略)
随即,学生边指图边说:“这个图形的面积就大于4平方米。”原来,他把两个正方形中间空隙也算入面积了。华老师没有简单纠正,他问学生:“这一块到底算不算?还得看究竟什么是面积。”一句话激活了学生相关的知识。学生纷纷发表观点,有的说:“面积是围成的平面图形的大小。”还有的说:“这个图形是这么围成的(注:生指图形的周长),因此那一块不应该算在内,这个图形的面积还是4平方米。”最后,华老师总结道:“通过刚才的讨论,我们对面积的意义有了更深的认识。那么,同学们,是谁帮助我们复习了面积的知识?”全班同学不约而同地将视线集中到刚才出错的学生身上。这个学生如释重负,没有了先前的那种羞愧,体面地坐下了。
【点评】
这样的课堂,受鼓励的并不是错误本身,而是其背后的独立思考以及非人云亦云的勇气。对于学生的差错,教师的心态是什么?是斥责、批评,还是欣赏和接纳,这反映了一个教师的教育观念。华罗庚说过:“天下只有哑巴没有说过错话,天下只有白痴没有想错过问题,天下没有数学家没算错过题。”学生出错是正常的,关键是我们怎样对待差错。
在华老师的数学课上,当学生回答问题出错时,常常会听到华老师大喊一声:“错得好。”在他看来,学生的差错是极有价值的,正好引起我们的思考。从这一点来说,学生的错误永远美丽。正确,可能只是一种模仿,而错误绝对是创新。传统教学中,老师往往对学生在学习过程中出现的各种错误极端不容。新课程背景下,我们认识到,错误本身乃是“达到真理的一个必然的环节”(黑格尔语)。放弃经历错误也就意味着放弃经历复杂性,远离谬误实际上就是远离创造。过度地防错、避错,缺乏对差错的欣赏与容纳,大大减少了学生扩展认知范围、接触新发现的机会,使天然的好奇心、求知欲以及大胆尝试的探索意识被压抑乃至被扼杀。所伴随生成的个性特征和思维特征必然是谨小慎微、害怕出错,这与敢于冒险,在失误中开辟新思路的创造型个性品质和创造型思维品质是背道而驰的。一条缺少岔路的笔直大道,使我们的孩子失去了很多触类旁通、联结新意向的机会,同时也由此失去了矫正失误和新发现的快乐。
那么,我们应当如何对待学生的差错呢?华老师的观点是,要从正面看待学生在学习中的差错,要从科学的角度理解学生在学习中可能出现的各种错误,要从发展的角度认识这些错误的价值,要允许、认同和接纳学生的错误。学生是成长中的尚不成熟的个体,尊重孩子的思维方式。小学生的思维发展还处于初级阶段,带有很大的具象性和片面性。老师既要把学生由“具象”引向“抽象”,由“片面”引向“全面”,又要保护孩子的自尊心,保护孩子思维的积极性。在教学的过程中,教师要有一颗童心,才能在与孩子交往的过程中,找到接触点和共振点,把握教育的契机。如果总是以成人的眼光看孩子,那么,孩子的一切言行都是幼稚、可笑的,那些新颖、奇特的想法和言行都可能被否定,就会扼杀孩子的天性和创造性。过去,我们对学生总是居高临下,今天,我们对学生更多的应当是平视和仰视,教师并没有什么特别高明的,只不过比学生先学了一步。
这个典型的案例告诉我们,最好的学习是在差错中学习,教师要将重点放在分析差错的正确方面和出现差错的原因上,让敢于发言的同学不带着任何遗憾坐下,老师的功夫恰恰体现在对差错的认识及利用上
张齐华《圆的认识》案例分析
宋剑湖小学 姚春霞
【案例】
师:对于圆,同学们一定不会感到陌生吧?(是)生活中,你们在哪儿见到过圆形?
生:钟面上有圆。
生:轮胎上有圆。
生:有些钮扣也是圆的。
……
师:今天,张老师也给大家带来一些。见过平静的水面吗,(见过。)如果我们从上面往下丢进一颗小石子(播放动态的水纹,并配以石子入水的声音),你发现了什么?
生:(激动地)水纹、水纹、圆……(声音此起彼伏)
师:其实这样的现象在大自然中随处可见,让我们一起来看看。(伴随着优美的音乐,阳光下绽放的向日葵、花丛中五颜六色的鲜花、光折射后形成的美妙光环、用特殊仪器拍摄到的电磁波、雷达波、月球上的环形山等画面一一展现在学生的眼前,见图①)从这些现象中,你同样找到圆了吗?
生:(惊异地,慨叹地)找到了。
师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?
生:(激动地)好!
[二]
师:俗话说,“没有规矩,不成方圆”。意思是说,如果没有圆规,是――
生:――画不出圆的。
师:同学们都准备了一把圆规,你能试着用它在白纸上画出一个圆吗?
生:能。
(学生尝试用圆规画圆,交流,明确圆规画圆的基本方法。)
师:可要是真没有了圆规,比如在圆规发明之前,我们就真画不出一个圆了吗?
生:不可能。
师:今天,每个小组还准备了很多其他的材料。你能利用这些材料,试着画出一个圆吗?
生:能。
(学生以小组为单位,利用手中的工具和材料画圆。)
师:张老师发现,每个小组都有了各自精彩的创造。让我们一起来分享。
生:我们组将圆形的瓶盖按在白纸上,沿着瓶盖的外框画了一个圆。
师:那叫“拷贝不走样”。(生笑)
生:我们手中的三角板中就有一个圆形窟窿,利用它,很方便地画出了一个圆。
师:真可谓就地取材,挺好!(笑)
生:我们组在绳子的一端系一支铅笔,另一端固定在白纸上,绳子绷紧,将铅笔绕一圈,也画出了一个圆。
师:看得出,你们组的创作已经初步具备了圆规的雏形。
生:我们组在绳子的一端系上一块橡皮,抓住绳子的另一端一甩,也同样出现了一个圆。
师:尽管这一方法没有能在白纸上最终“画”出一个圆,但他们的创造仍然是十分美妙的,不是吗?(生热烈鼓掌)
师:可是,既然不用圆规,我们依然创造出了这么多画圆的方法,那么俗语中为什么还会有“没有规矩,不成方圆”的说法呢?
生:我想,大概是古时候的人们没想到这些方法吧?(生笑)
生:我觉得不是这样,因为,或许一开始,“没有规矩,不成方圆”指的是没有圆规和“矩”画不出方和圆,但是流传到后来,它的意思已经发生了改变,不再仅仅指原来的意思了,而是指很多事情,必须要讲究规矩,遵循章法。(不少同学投以赞许的目光)
师:真没想到,一条普通的数学规律,经过千年流传,竟逐渐成为我们生活中一条重要的人生准则。当然,同学们能够利用各自的智慧,成功演绎“没有规矩,仍成方圆”,足以说明大家不凡的创造力了。
[三]
(通过自学,学生认识完半径、直径、圆心等概念后。)
师:学到现在,关于圆,该有的知识我们也探讨得差不多了。那你们觉得还有没有什么值得我们深入地去研究?
生:有(自信地)。
师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。第二,实在没啥研究了,别急,老师还为每一小组准备一份研究提示,到时候打开看看,或许对大家的研究会有所帮助。
伴随着优美的音乐,学生们以小组为单位,展开研究,并将研究的成果记录在教师提供的“研究发现单”上,并在小组内先进行交流)
师:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分。下面,就让我们一起来分享大家的发现吧!
生:我们小组发现圆有无数条半径。
师:能说说你们是怎么发现的吗?
生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。
生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。
生:我们组没有折,也没有画,而是直接想出来的。
师:噢?能具体说说吗?
生:因为连接圆心和圆上任意一点的线段叫做圆的半径,而圆上有无数个点(边讲边用手在圆片上指),所以这样的线段也有无数条,这不正好说明半径有无数条吗?
师:看来,各个小组用不同的方法,都得出了同样的发现。至少直径有无数条,还需不需要再说说理由了?
生:不需要了,因为道理是一样的。
师:关于半径或直径,还有哪些新发现?
生:我们小组还发现,所有的半径或直径长度都相等。
师:能说说你们的想法吗?
生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。
生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。
生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。
生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。
师:大家觉得他的这一补充怎么样?
生:有道理。
师:看来,只有大家互相交流、相互补充,我们才能使自己的发现更加准确、更加完善。还有什么新的发现吗?
生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。
师:你们是怎么发现的?
生:我们是动手量出来的。
生:我们是动手折出来的。
生:我们还可以根据半径和直径的意义来想,既然叫“半径”,自然应该是直径长度的一半喽……
师:看来,大家的想象力还真丰富。
生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。
师:圆的大小和它的半径有关,那它的位置和什么有关呢?
生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。
生:我们组还发现,圆是世界上最美的图形。
师:能说说你们是怎样想的吗?
生:生活中,我们到处都能找到圆。如果没有了圆,我们生活的世界一定会缺乏生机
生:我们生活的世界需要圆,如果没有了圆,车子就没法自由的行驶……
师:当然,张老师相信,同学们手中一定还有更多精彩的发现,没来得及展示。没关系,那就请大家下课后将刚才的发现剪下来,贴到教室后面的数学角上,让全班同学一起来交流,一起来分享,好吗?
生:好。
[四]
师:其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:“圆,一中同长也。”所谓一中,就是指一个――
生:圆心。
师:那同长又指什么呢?大胆猜猜看。
生:半径一样长。
生:直径一样长。
师:这一发现,和刚才大家的发现怎么样?
生:完全一致。
师:更何况,我古代这一发现要比西方整整早一千多年。听到这里,同学们感觉如何?
生:特别的自豪。
生:特别的骄傲。
生:我觉得我国古代的人民非常有智慧。
师:其实,我国古代关于圆的研究和记载还远不止这些。老师这儿还搜集到一份资料,《周髀算经》中有这样一个记载,说“圆出于方,方出于矩”,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的(动画演示:圆向方的渐变过程,如图②)。现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?
生:圆的直径是6厘米。
生:圆的半径是3厘米。
师:说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图③),认识吗?
生:阴阳太极图。
师:想知道这幅图是怎么构成的吗?(想!)原来它是用一个大圆和两个同样大的小圆组合而成的(出示图④)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?
生:小圆的直径是6厘米。
生:大圆的半径是6厘米。
生:大圆的直径是12厘米。
生:小圆的直径相当于大圆的半径。
……
师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?
生:我觉得石子投下去的地方就是圆的圆心。
生:石子的力量向四周平均用力,就形成了一个个圆。
生:这里似乎包含着半径处处相等的道理呢。
师:瞧,简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。
师:其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――
(伴随着优美的音乐,如下的画面一一展现在学生眼前:生活中的圆形拱桥、世界著名的圆形建筑、中国著名的圆形景德镇瓷器、中国民间的圆形中国节、中国传统的圆形剪纸、世界著名的圆形标志设计等等,如图⑤。)
师:感觉怎么样?
生:我觉得圆真是太美了!
生:我无法想象生活中如果没有了圆,将会是什么样子。
生:生活中因为有了圆而变得格外多姿多彩。
……
师:而这,不正是圆的魅力所在吗?
[五]
师:西方数学、哲学史上历来有这么种说法,“上帝是按照数学原则创造这个世界的”。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳……而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有“圆满”“美满”……而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!
【反思与点评】
多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为障碍学生数学学习的绊脚石。事实上,造成这一现象的原因是多方面的,而一味注重数学知识的传递、数学技能的训练,漠视数学本身所内涵的鲜活的文化背景,漠视浸润在数学发展演变过程中的人类不断探索、不断发现的精神本质、力量以及数学与人类社会(包括自然的、历史的、人文的)千丝万缕的联系,显然应看成造成这一现象的重要原因之一。
众所周知,数学本质上是一种文化,《数学课程标准》在前言中明确指出:数学的“内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我立足从过程与凝聚两个角度进行探索。“圆的认识”一课正是我所作的一次粗浅尝试。
数学发展到今天,人们对于她的认识已经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程得以自然建构与生成。
在承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。藉此,教学伊始,我们选择从最最常见的自然现象引入,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,从宏观的视野丰富学生的认识视域;最后,我们更是借助“解释自然中的圆”和“欣赏人文中的圆”等活动,帮助学生在丰富多彩的数学学习中层层铺染、不断推进,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有的习惯思维与阴影,真正美丽起来。
当然,“理想的课程”如何转化为“现实的课程”,这当中仍然有许多值得深切关注的话题。就拿本课教学而言,实施下来,应该说,学生对于“圆”这一冰冷图形背后所蕴含的人文的、文化的特性的感受还是十分真切的,然而,作为问题的另一方面,对于基本的数学知识、数学技能的掌握,在教学后的反馈中也确实暴露出了一定的问题,尤其表现在部分学生对于圆的半径、直径等概念的理解不够到位,对于直径、半径及其与圆之间的关系的掌握不够透彻等。因而,今后我们在数学课堂演绎数学文化、数学精神等层面的同时,如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,应该还是有一定的启示意义的。