小学数学问题解决策略的梳理
在小学阶段,随着学习的深入,接触到的数学解决问题策略也会越来越多。掌握各种解决问题的策略,对数学学习非常重要,能够培养学生的数学思维,发展数学关键能力。现就数与代数领域,关于小学数学解决问题的策略做一个梳理:
数与代数领域,小学数学解决问题中的基本策略分别是:转化策略、枚举策略、替换策略、假设策略、逆推策略。
转化策略转化也是小学数学解决问题中常用的一种方法,能把较复杂的问题转化为简单问题,能把未知的问题变为已知的问题。
例:妈妈买了2千克柑橘和5千克生梨,共花了28.6元。每千克柑橘的价格是生梨的4倍,每千克柑橘和生梨各多少元?
分析:“每千克柑橘的价格是生梨的4倍”,这句话就是转化的条件。我们可以这样想:买1千克柑橘的价钱可以买4千克生梨,那么买2千克柑橘的价钱可以买2×4=8千克生梨。所以总共花了28.6元相当于买了(8+5)千克生梨所花的钱。通过转换,问题就得以解决了。
枚举策略在解决一些特殊问题时,有时候没有办法列算式,这个时候列举出被研究对象的所有可能情况,则能使问题比较容易地获得解决。和列表策略一样,在枚举时也要做到有序思考,这样才能做到不重不漏。
例:已知三角形的一个内角为50°,它与邻角之差为30°,求这个三角形另外两个内角的度数。
分析:根据题目条件,与内角50°相邻的内角可能是“50°-30°”;也可能是“50°+30°”。于是便有下面两种可能情况。
(1)当此相邻内角为50°-30°=20°时,三角形另外一个内角为180°-50°-20°=110°。
(2)当此相邻内角为50°+30°=80°时,三角形另外一个内角为180°-50°-80°=50°。答:这个三角形另外两个内角为20°、110°或80°、50°。
替换策略“替”,顾名思义就是“替代”;“换”,自然就是“更换”的意思。替换策略是用来解决几个数量与总量之间的关系问题。运用替换策略能把两个量与总量的关系简化为一个量与总量的关系,从而有助于解决问题。例:体育课上练习拍皮球,四(2)班有44位同学,每人需要一个球。班干部在课前帮同学们去运皮球。体育室有4个大框和2个小筐,正好装完44个皮球且每个筐都装满。每个大筐比小筐能多装2个皮球。每个小筐和大筐各能装几个皮球?
分析:运用替换的策略,可以把4个大筐替换为4个小筐,则4+2=6个小筐所装的皮球的总量就比原来的44个皮球少2×4=8个皮球。因此,每个小筐可以装(44-8)÷6=6个皮球,每个大框可以装6+2=8个皮球。也可以把2个小筐替换为2个大筐,则4+2=6个大筐所装的皮球的总量就比原来的44个皮球多2×2=4个皮球。因此,每个大筐可以装(44+4)÷6=8个皮球,每个小筐可以装8-2=6个皮球。
假设策略是一种策略,问题中有两个未知量,可以通过假设转化成一个未知量,使数量关系变得简单;在假设时,要抓住两个量之间的关系进行转化,才能统一成一个未知量;画图有助于帮助理解数量之间的关系;假设时也可以用字母表示未知量,列方程来解答。
例:林林把540毫升果汁倒入6个小杯和1个大杯,正好倒满。大杯的容量是小杯的3倍。小杯和大杯的容量各是多少毫升?
分析:想:1个大杯可以换成(3)个小杯,540毫升果汁正好能倒满(6+3=9)个小杯。
列式:540÷(6+1×3)=60(毫升) 小杯容量
也可以想:6个小杯可以换成(6÷3=2)个大杯
540毫升果汁正好能倒满(2+1=3)个大杯
列式:540÷(6÷3+1)=180(毫升) 大杯容量
逆推策略逆推,即“逆回来、倒过去”推想,也叫倒推法、还原法。就是从事情的结果出发,倒过去推想它最开始是怎样的。当我们已知“现在”的状态,要去求“原来”时,常常可以运用逆推策略帮助思考。
例:强强、壮壮、婷婷共有30支棒棒糖。强强给壮壮6支,壮壮再给婷婷8支,现在三人就有同样多的棒棒糖。原来强强、壮壮、婷婷各有多少支棒棒糖?
分析:根据现在三人的棒棒糖同样多,可以先求出现在每人有30÷3=10支棒棒糖。然后分别运用逆推策略进行思考,还原到变化之前每人的棒棒糖有几支,从而简洁地解决问题。强强原来有10+6=16支棒棒糖,壮壮原来有10+8-6=12支棒棒糖,婷婷原来有10-8=2支棒棒糖。最后,再通过加法检验一下。16+12+2=30支,总和的确是30支棒棒糖,说明做对了。
同一个知识内容,不同的理解角度、不同的思维方式,所选择的解题策略也会有所不同。在平时教学中,要尽可能多地让学生掌握解决问题的一些策略,在遇到具体问题时灵活判断和选择相关策略进行综合运用,从而提高解决问题的能力,提高解题效率。